博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
强化学习基础:蒙特卡罗和时序差分
阅读量:6233 次
发布时间:2019-06-22

本文共 2248 字,大约阅读时间需要 7 分钟。

这篇文章承接文章,介绍另外两种解决强化学习问题的方法

求解方法:Monte Carlo

  • 问题一(左图):estimate the state-value function $v_{\pi}$ corresponding to a policy $\pi$
    • First-visit MC estimates  $v_{\pi}(s)$ as the average of the returns following only first visits to $s$ (ignores returns that are associated to later visits)
    • Every-visit MC estimates  $v_{\pi}(s)$ as the average of the returns following all visits to $s$
  • 问题二(右图):estimate the action-value function $q_{\pi}$ corresponding to a policy $\pi$
    • First-visit MC estimates  $q_{\pi}(s,a)$ as the average of the returns following only first visits to $s,a$
    • Every-visit MC estimates  $q_{\pi}(s,a)$ as the average of the returns following all visits to $s,a$

  • 问题三(左图):get the optimal policy $\pi_*$
    • relationship between the mean and individual return: $\bar{Q}_k=\frac{\sum_{i=1}^kG_i}{k}=\bar{Q}_{k-1}+\frac{1}{k}(G_k-\bar{Q}_{k-1})$
    • $\epsilon$-greedy:  Exploration vs Exploitation
      • with probability $1-\epsilon$, select the greedy action ${\pi}(s)=\arg \max _{a \in \mathcal{A}(s)} Q(s, a)$ (Exploitation)
      • with probability $\epsilon$, select an action (uniformly) at random ${\pi}(a|s)=\frac{1}{|\mathcal{A}(s)|}$ (Exploration)  
  • 问题四(右图):modify the algorithm to put more weights to the most recent returns 

 

求解方法:Temporal Difference

Monte Carlo (MC) prediction methods must wait until the end of an episode to update the value function estimate, temporal-difference (TD) methods update the value function after every time step.

  • 问题一(左图):estimate the state-value function $v_{\pi}$ (the estimation of $q_{\pi}$ is similar)
  • 问题二(右图):get the optimal action value function $q_*$
    • On policy: the agent interact with the environment by following the same policy $\pi$ that it seeks to evaluate (or improve)
    • Sarsa(0) is an on-policy method

  • 问题三:modified algorithm to get the optimal action value function $q_*$
    • Off poliy: the agent interact with the environment by following a policy $b$ that is different from the policy $\pi$ that it seeks to evaluate (or improve)
    • Sarsamax(i.e., Q-learning) is an off-policy method

  • 问题四:another modified algorithm to get the optimal action value function $q_*$
    • Expected Sarsa is an on-policy method
    • $\pi(a|S_{t+1})$ is derived from $Q$ (e.g., $\epsilon$-greedy)

转载于:https://www.cnblogs.com/sunwq06/p/11084512.html

你可能感兴趣的文章
根据用户输入的时间查询那天的数据
查看>>
协议的字段和打包解包要分离
查看>>
QNX入门参考
查看>>
aptana乱码解决办法(很原始的方法)
查看>>
用ClassPathXmlApplicationContext读取Spring配置文件的路径问题
查看>>
利用HTML5 的datalist 元素实现输入提示
查看>>
Kerberos
查看>>
.Net最佳实践3:使用性能计数器收集性能数据
查看>>
Mac上编译libimobiledevice库
查看>>
AngularJS中的ng-controller是什么东东
查看>>
使用AngularJS中的filterFilter函数进行过滤
查看>>
windows 下安装nodejs 要怎么设置环境变量
查看>>
零售月结
查看>>
Android与iOS支持的音频格式
查看>>
深入理解软件构造系统:原理与最佳实践
查看>>
MySQL5.7: sql script demo
查看>>
VC助手失效解决办法
查看>>
一起谈.NET技术,模拟IIS向Silverlight输出策略文件
查看>>
Asp.Net知识锦分享,徐汇区网站设计
查看>>
如果编程语言是一条船
查看>>